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Research Article

Across locations and time, humans have lived together in 
stable groups that display within-group cooperation and 
out-group antagonism. Tribes, platoons, countries, sports 
teams, and corporations all persist, favoring “us” over 
“them.” How do such groups emerge? One answer is that 
groups form along observable preexisting differences in 
physical (e.g., race) or cultural (e.g., language) character-
istics. However, such observable differences often emerge 
as a result of people living in distinct groups, which 
makes this answer somewhat circular. We suggest that 
groups can emerge in completely homogeneous popula-
tions of interacting agents as long as two simple condi-
tions—reciprocity and transitivity—are met. We use 
agent-based modeling to show that repeated network 
interaction under these two conditions gives rise to 
groups. These models suggest that group genesis and 
perpetuation need not require common identity, shared 
goals, or cultural differences.

Identity and the Problem of 
Heterogeneous Populations

Social identity is the predominant paradigm for under-
standing intergroup phenomena (Brewer & Kramer, 1985; 
Dovidio, Gaertner, & Validzic, 1998; Tajfel, 1982). In this 
framework, groups are defined in terms of the individu-
als who identify themselves as members of those groups 
(Reicher, 1982). Such identification, whether based on 
deep (e.g., religion or race) or superficial (e.g., eye color 
or art preferences) characteristics, predicts both in-group 
favoritism and out-group antagonism (Brewer & Kramer, 
1985; Harmon-Jones, Greenberg, Solomon, & Simon, 
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Abstract
Psychological explanations of group genesis often require population heterogeneity in identity or other characteristics, 
whether deep (e.g., religion) or superficial (e.g., eye color). We used agent-based models to explore group genesis in 
homogeneous populations and found robust group formation with just two basic principles: reciprocity and transitivity. 
These emergent groups demonstrated in-group cooperation and out-group defection, even though agents lacked 
common identity. Group formation increased individual payoffs, and group number and size were robust to varying 
levels of reciprocity and transitivity. Increasing population size increased group size more than group number, and 
manipulating baseline trust in a population had predictable effects on group genesis. An interactive demonstration of 
the parameter space and source code for implementing the model are available online.
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1996; Tajfel, Billig, Bundy, & Flament, 1971). Social iden-
tity provides an intuitive way of understanding group  
formation, but identity-based groups—even minimal 
groups—require preexisting differences among people 
(i.e., population heterogeneity), whether fundamental 
(Kunda, 1999) or superficial (Efferson, Lalive, & Fehr, 
2008). Although people differ along many dimensions 
(e.g., race, language, religion, and political orientation), 
such differences often arise on the basis of preexisting 
grouping—if only via geographical separation (Howells 
et al., 1966). This suggests potential circularity in the role 
of social identity: Groups form because people are differ-
ent, but people are different because they belong to dif-
ferent groups. To escape this circularity, we examined 
whether groups form in completely homogeneous popu-
lations through two basic principles of social interaction.

Conditions for Group Genesis: 
Reciprocity and Transitivity

Reciprocity—A helps (or harms) B, and B in turn helps 
(or harms) A—is a ubiquitous feature of life for organ-
isms ranging from vampire bats and birds to monkeys 
and humans (Fudenberg, Rand, & Dreber, 2012; Olendorf, 
Getty, & Scribner, 2004; Trivers, 2006; Wilkinson, 1984). 
Because reciprocity depends on repeated interactions 
over time (Trivers, 1971), it occurs more frequently 
between individuals who are interpersonally close (e.g., 
friends) rather than distant (e.g., foreign pen pals). 
Reciprocity is not only a consequence of interpersonal 
closeness but also a cause, as people prefer to interact 
more with (i.e., become closer to) those who cooperate 
more with them (Rand, Arbesman, & Christakis, 2011; 
Van Lange & Visser, 1999; Wang, Suri, & Watts, 2012).

Transitivity is the phenomenon that individuals gener-
ally share their friends’ opinions of other people (Louch, 
2000). Imagine a triad of people—A, B, and C. If A and B 
are friends, and A likes (or dislikes) C, then B should also 
like (or dislike) C. In short, triads should be balanced 
such that friends of your friends should be your friends, 
and enemies of your friends should be your enemies 
(Heider, 1958).1 When triads are unbalanced (e.g., you 
hate your spouse’s best friend), the resulting dissonance 
(Moore, 1978) causes one person—typically, the one 
who cares least—to change his or her opinion (Davis, 
1963). If A slightly likes C, but B completely hates C, A’s 
opinion is more changeable than B’s.

We suggest that these two phenomena—reciprocity 
and transitivity—are sufficient for the emergence of groups 
within homogeneous populations. More concretely, 
groups should spontaneously evolve when (a) people 
move closer to those who cooperate with them, (b) peo-
ple cooperate more with those who are closer to them, 

and (c) people move closer to their friends’ friends and 
move further from their friends’ enemies.2 The effects of 
reciprocity and transitivity are well documented in isola-
tion (Dal Bó, 2005; Davis, 1970; Fudenberg et al., 2012; 
Holland & Leinhardt, 1971), and we suggest that their 
repeated combination can transform a population of indi-
viduals without identity—or any differences whatsoever—
into stable, cohesive groups that favor the in-group over 
the out-group.

Analytic Approach

Psychological research on social dynamics often examines 
one-time dyadic interactions in isolation, but intergroup 
phenomena often emerge from the repeated interaction of 
multiple individuals over time. Studying these multi-agent 
phenomena was once prohibitively time-consuming 
(Sherif, 1961), but modern computational techniques can 
simulate emergent phenomena through agent-based mod-
eling. Agent-based models are programs in which simu-
lated individuals (agents) interact through time according 
to simple rules (Bonabeau, 2002; Macy & Willer, 2002; 
Smith & Conrey, 2007). Although the models are rule 
based, the large number of simulated individuals and 
interactions allows the emergence of complex behavioral 
patterns (Marsella, Pynadath, & Read, 2004; A. Nowak, 
Szamrej, & Latané, 1990; Smith & Conrey, 2007; Vallacher, 
Read, & Nowak, 2002). Agent-based modeling has been 
used, for example, to examine the density at which crowds 
turn lethal (Seabrook, 2011), the origins of preferences for 
fairness (Rand, Tarnita, Ohtsuki, & Nowak, 2013), and the 
manner in which people pair with romantic partners 
(Kalick & Hamilton, 1986).

We used agent-based modeling to examine whether 
reciprocity and transitivity induce group formation in 
homogeneous populations. Consistent with previous 
research on the evolution of cooperation in biology, psy-
chology, and economics (Axelrod & Hamilton, 1981; 
Fudenberg & Maskin, 1986; M. A. Nowak & Sigmund, 
1992; Van Lange, Ouwerkerk, & Tazelaar, 2002), our 
study used a prisoner’s dilemma game to represent coop-
erative interactions between agents. In a single prisoner’s 
dilemma, two people interact, and each has the choice to 
cooperate or defect. Cooperators pay a cost to give a 
larger benefit to the other person, whereas defectors 
maximize their own payoff at the expense of the other 
person. This simple game captures the essence of social 
dilemmas: the tension between what is best for the indi-
vidual (defection) and what is best for the group (coop-
eration). Figure 1 presents the payoffs used in our 
simulations.

Although defection maximizes individual payoffs in a 
single prisoner’s dilemma, repeated interactions allow 
for reciprocity to develop over time (Fudenberg & 

 at University of North Carolina at Chapel Hill on June 28, 2014pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


984	 Gray et al.

Maskin, 1986; Rand & Nowak, 2013; Trivers, 1971). If 
two people see each other often, it can be payoff maxi-
mizing for either of them to cooperate today in order to 
earn reciprocal cooperation tomorrow. Note that recip-
rocal strategies can involve changing relational closeness 
(Rand et al., 2011; Van Lange & Visser, 1999): If A coop-
erates with B, B is more inclined to interact with A in the 
future, whereas if A defects, B is less inclined to interact 
with A.

In our simulations, agents played a series of prisoner’s 
dilemmas within an initially uniform network (i.e., all 
agents were equally close to one another at the outset). 
The probability of both interaction and cooperation was 
proportional to closeness, or how much players “liked” 
each other (e.g., “I am close to people whom I see often 
and to whom I am nice”). Reciprocity was instantiated by 
allowing agents to adjust their closeness to their partner 
after each interaction (e.g., “he was nice, so I will move 
closer”). Transitivity was instantiated by allowing agents 
to adjust their closeness with third parties on the basis of 
their partner’s preferences after each cooperative interac-
tion (e.g., “he was nice to me, and he is friends with her, 
so I will move closer to her, too”). These agent-based 
simulations provided a formal proof of whether reciproc-
ity and transitivity can induce group genesis in homoge-
neous populations.

To evaluate the generalizability of these models, we 
examined two additional variables: individual payoffs 
and trust (vs. suspicion). The prevalence and apparent 
benefits of groups within diverse evolutionary settings 
(Olson, 1965) suggest that groups may increase individ-
ual payoffs. We measured payoffs in our simulations, pre-
dicting that conditions conducive to group genesis—the 
presence of reciprocity and transitivity—would yield 
higher individual payoffs than conditions unfavorable  
to group genesis. We also manipulated the population 
level of trust by varying agents’ baseline likelihood of 

cooperation in the prisoner’s dilemma. We predicted that 
more trusting agents (i.e., those who more readily coop-
erated in a prisoner’s dilemma) would form large inclu-
sive groups (like communes), and more suspicious agents 
would form small, splintered groups (like terrorist cells).

In addition to making a theoretical contribution to  the 
understanding of group genesis and perpetuation, we 
hope to make agent-based modeling more accessible to 
psychological science, so we have provided a version of 
the MATLAB code we used for our simulations (with 
comments) in the Supplemental Material (for another 
guide, see Smith & Conrey, 2007). To further emphasize 
the flexibility of agent-based modeling, we have pro-
vided an interactive Web site based on this code: www 
.mpmlab.org/groups/ (Fig. 2); researchers who visit this 
site can experiment with the model parameters and 
experience the power of reciprocity and transitivity to 
induce group genesis.

Method: Translating Reciprocity and 
Transitivity Into Code

Imagine a group of identity-less strangers airlifted to a 
desert island. As they roam, they occasionally run into 
one another, and when they do, they each have the 
chance to cooperate or defect. If both cooperate, they 
become friends and try to see each other more often; if 
both defect, they become enemies and try to see each 
other less often (reciprocity). If one defects and the other 
cooperates, there is no change in overall closeness 
because although the cooperator dislikes being taken 
advantage of, the defector likes a sucker. As people 
become friends, they become more likely to cooperate 
when they happen to meet, and as they become enemies, 
they become more likely to defect. People also have the 
chance to learn what their friends think of third parties (a 

Pl
ay

er
 1

Player 2

Cooperates Defects

Cooperates –3/3

Defects

1/1

3/–3 –1/–1

Payoff: Player 1/Player 2

Fig. 1.  Summary of the prisoner’s dilemma payoffs used in the simu-
lations. Each of two players has the option to cooperate or defect; 
cooperation makes the dyad as a whole better off, but is individually 
costly because defection maximizes the individual’s payoff within a 
single round.

Fig. 2. Screenshot of the interactive online demonstration (available at  
www.mpmlab.org/groups/).
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process akin to gossip in the real world) and can adjust 
their preferences accordingly: They move closer to their 
friends’ friends and further from their friends’ enemies 
(transitivity). We suggest that repeated interaction of reci-
procity and transitivity will rapidly transform selfish, iden-
tity-blind agents into stable groups. We used agent-based 
modeling to computationally test this idea.

Our model is based on four steps.

1.	 Probability of interaction: The closeness between 
players is represented in our model by a symmet-
ric matrix, C. Each cell represents the closeness of 
player n (column) and player m (row). Thus, the 
cell C(4,5), which is equal to the cell C(5,4) 
because the matrix is symmetric, represents the 
likelihood that players 4 and 5 interact. Initially, all 
the cells in the matrix are set to .5 (range: 0–1), 
such that all players are neither close nor far from 
each other (i.e., they are indifferent). Each round, 
a random pair of players (n and m) is selected, 
and a random number between 0 and 1 is gener-
ated. If the value of C(n,m) is higher than this 
random number, players n and m interact; other-
wise they do not, and another pair and new ran-
dom number are selected. In the model, as in real 
life, greater closeness leads to more interaction.

2.	 Interaction behavior and payoffs: When two play-
ers n and m interact, they play a prisoner’s 
dilemma, each deciding whether to cooperate or 
defect, and each receiving a payoff based on the 
matrix shown in Figure 1. Two random numbers 
are generated, one for player n and one for player 
m. If the players’ closeness—the value of C(n,m)—
is higher than a player’s random number, then that 
player cooperates. If not, then that player defects. 
For example, if C(n,m) is .80, n’s random number 
is .91 and m’s random number is .15, then n 
defects and m cooperates. In the model, as in real 
life, greater closeness leads to more cooperation.

3.	 Reciprocity—moving closer or further from part-
ners: If both players cooperate, they move closer; 
that is, the value of C(n,m) increases. The amount 
by which their closeness increases is determined 
by the reciprocity mobility parameter, r: The dis-
tance between C(n,m) and 1 (maximum close-
ness) is divided by r, and the resulting value is 
subtracted from 1 to arrive at the new value of 
C(n,m). For example if C(n,m) for mutually coop-
erating players is .70 and r is 2, then the distance 
between .70 and 1 is divided by 2 and subtracted 
from 1; thus, C(n,m) increases to .85. If r is 3, then 
the distance between .70 and 1 is divided by 3, 
and C(n,m) increases to .90. Conversely, if both 
players defect, they move away from one another; 

the difference between their current closeness and 
the minimum closeness value of 0 is divided by r 
to arrive at the new value of C(n,m). For example, 
if C(n,m) is .75 and r is 3, the new C(n,m) is .25. 
No change in C(n,m) occurs when one player 
cooperates and the other defects. In sum, r repre-
sents the tendency of players to reciprocate by 
changing their future interaction probabilities; val-
ues of r greater than 1 instantiate reciprocity.

4.	 Transitivity: If both players cooperate, then transi-
tivity operates, and the players compare their 
closeness to all other players other than them-
selves. In other words, if n and m both cooperate, 
they compare C(n,x) with C(m,x) for all x ≠ n,m. 
Whoever of n and m has the weaker opinion (i.e., 
smaller absolute difference from the midpoint of 
.50) adjusts his or her closeness to the target player 
x by a factor of t, the transitivity mobility factor. 
For example, if C(n,x) is .62 and C(m,x) is .10 (m 
really hates x, whereas n likes x only mildly3), and 
if t has a value of 2, then C(n,x) becomes .31 (half 
of .62). In less mathematical terms, if Fred and 
Bob cooperate, they discuss all their mutual 
acquaintances and shift their views to be more in 
line, with more extreme views swaying less 
extreme views. It should generally be true that t is 
less than r, as direct experience with someone 
(captured by r) should shape opinions more 
strongly than hearsay (captured by t). In sum, t 
represents the mobility of players with transitivity; 
values of t greater than 1 allow for transitivity.

Steps 1 through 4 are repeated for as long as desired, 
but most usefully until the matrix stops changing appre-
ciably (i.e., until groups become stable).

Results: The Genesis of Groups

We used this model to answer four specific questions: Do 
groups form in homogeneous populations under condi-
tions of reciprocity and transitivity? What are the configu-
rations of these groups across parameter space? How are 
individual payoffs influenced by group-promoting condi-
tions? How does trust influence group genesis? We 
answered each of these questions by conducting simula-
tions across parameter space, averaging 100,000 model 
iterations of at least 10,000 rounds for each configuration.

Do groups form in homogeneous 
populations under conditions of 
reciprocity and transitivity?

To quantify the extent to which our population of agents 
forms groups, we used the standard global clustering 
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coefficient used in network science (e.g., Opsahl & 
Panzarasa, 2009). This value ranges from 0 to 1, with 0 
indicating a complete absence of clustering and 1 indicat-
ing the presence of completely distinct groups. Fixing N 
at 50 and varying r and t over the integer values between 
1 and 10, we found perfect group formation (clustering 
coefficient of 1) in all simulations in which there was 
both reciprocity (r > 1) and transitivity (t > 1). Group 

genesis was also robust across the number of players 
(Fig. 3).

What are the configurations of these 
groups across parameter space?

Reciprocity (r) and transitivity (t).  Fixing N at 50 
and varying r and t across the parameter space in which 
groups form (1 < r ≤ 10, 1 < t ≤ 10), we found substantial 
robustness in group configurations. As Figure 4 shows, 
increasing reciprocity led to slightly fewer but larger 
groups, and increasing transitivity led to slightly more but 
smaller groups. However, these effects were relatively 
small, which suggests that the dynamics of group genesis 
are generalizable and not specific to particular levels of 
reciprocity and transitivity. Of course, as in the real 
world, there was large variability in group formation 
across individual simulations. Randomness and path 
dependence mean that simulations with identical param-
eters may lead to one large group, a couple of similarly 
sized groups, or even mostly isolated individuals.

Number of players (N).  Fixing r at 3 and t at 2, we 
varied N between 10 and 100 in increments of 5, and this 
variation exerted a large influence on group structure. As 
shown in Figure 5, increasing N increased both group 
size and group number, but group size increased much 
more dramatically than group number. These results sug-
gest that large populations typically form a small number 
of large groups rather than a large number of small 
groups (see Fig. 6). This result is corroborated by real-
world data in the networks literature, in domains ranging 
from collaboration networks of scientists to the structure 
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of the political blogosphere (Girvan & Newman, 2002; 
Lazer et al., 2009).

How are individual payoffs 
influenced by group-promoting 
conditions?

Our agents spontaneously formed into groups, but were 
they better off for having done so? Average individual 
payoffs could range from −3 to 3 (Fig. 1); random  
strategy selection would yield an average payoff of 0, and 
cooperation of both players would yield an average pay-
off of 1. Without reciprocity or transitivity (r = 1, t = 1, no 

groups), agents remained indifferent to each other and 
interacted at random, earning an average payoff of 0. The 
same was true of agents with transitivity but no reciproc-
ity (r = 1, t > 1). Reciprocity alone (r > 1, t = 0) allowed 
individual pairs of agents to learn to cooperate and 
increased the average payoff to 0.24. With both reciproc-
ity and transitivity (r > 1, t > 1), agents were able to form 
cooperative groups, and the average payoff increased 
substantially, to 0.47. Increasing the population size 
increased payoffs because larger groups conferred more 
cooperating members, but this effect was relatively small 
(N = 10: average payoff = 0.44; N = 100: average payoff = 
0.49).

How does trust influence group 
genesis?

Interpersonal trust was manipulated by adjusting players’ 
baseline cooperation likelihood—given by C(n,m)—by 
adding a constant, A. To make players more suspicious, 
we made their probability of cooperating lower than 
C(n,m) by defining A as less than 0; to make them more 
trusting, we made their probability of cooperating higher 
than C(n,m) by defining A as greater than 0. In other 
words, suspicious players cooperated only with relatively 
closer others, whereas trusting players cooperated even 
with relatively distant others.

The influence of trust can be examined via the cluster-
ing coefficient (see Fig. 7). When A was sufficiently nega-
tive, suspicion prevented players from cooperating and 
forming stable bonds; the result was a landscape of com-
pletely isolated individuals (clustering coefficient = 0). 
When A was sufficiently positive, not only did groups 
form quickly, but players formed one large group (akin 
to a commune). Thus, group formation was predictably 
influenced by trust, and this result increases the psycho-
logical generalizability of this model.

General Discussion

Our model provides a simple but powerful tool for study-
ing group genesis, and reveals not only the necessary con-
ditions for group formation, but also the configuration of 
the resulting groups, the influence of group-promoting 
conditions on individual payoffs, and the impact of trust. 
Our results suggest that groups form robustly under condi-
tions of reciprocity and transitivity, for all observed popu-
lation sizes. Despite high variability across individual 
simulations, group structure was robust to varying param-
eter values of reciprocity and transitivity, and responded 
systematically to population size. Analyses of individual 
payoffs suggest that conditions for group genesis are adap-
tive, and manipulating psychological context—trust versus 
suspicion—coherently influenced group formation. Our 
agent-based model provides a parsimonious explanation 
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for group genesis: Reciprocity and transitivity combine 
over time to bind together selfish, identical, and identity-
blind agents into distinct clusters.

Consistent with these results, research has docu-
mented robust group formation under conditions of reci-
procity and transitivity in relatively homogeneous 
real-world populations, including hunter-gatherers in 
Tanzania (Apicella, Marlowe, Fowler, & Christakis, 2012), 
graduate business students at a mixer (Ingram & Morris, 
2007), and monk novitiates at an American monastery 
(Sampson, 1969; illustrated in Fig. 8). In addition, research 
has documented the power of reciprocity and transitivity 
to amplify group formation in social networks—to trans-
form even modest degrees of in-group preference into 
striking patterns of segregation (Kossinets & Watts, 2009; 
Wimmer & Lewis, 2010). To our knowledge, our research 
is the first to demonstrate robust group emergence in a 
fully homogeneous population.

Our work provides a first simple step in modeling 
group genesis, and future models should explore more 
complex scenarios. For example, it will be important to 
examine multigroup formation (i.e., multiplexity; Krohn, 
Massey, & Zielinski, 1988) because individuals typically 
belong to multiple groups across different social contexts 
(e.g., work units, friendship groups, and athletic teams). 

Smaller groups (e.g., state Democrats) are often subsumed 
within larger groups (e.g., national Democrats), and so 
future research might examine hierarchical group forma-
tion. More complex reciprocity rules could also be exam-
ined. For simplicity, our model assumes that interpersonal 
closeness remains constant after a prisoner’s dilemma with 
one cooperator and one defector. Given that research 
points to the greater power of negativity over positivity 
(Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001), we 
ran new simulations in which defection was more power-
ful than cooperation: When one player cooperated and 
the other defected, the two players moved somewhat fur-
ther apart. As in the earlier simulations, stable groups 
formed, although the clustering coefficient took a small 
initial dip (from .50 to .43) before proceeding monotoni-
cally to maximum clustering (at 1.00), as before. Finally, 
model complexity could be increased by moving from 
dyadic interactions to multiplayer interactions. In the 
Supplemental Material, we present a generalization of the 
prisoner’s dilemma model to n-player public-goods games 
and again document robust group genesis.

Our research highlights the importance of understand-
ing social phenomena across levels (Bonabeau, 2002; 
Brewer, 2013; Gray, Young, & Waytz, 2012; Macy & Willer, 
2002; A. Nowak et al., 1990; Smith & Conrey, 2007; 
Vallacher et al., 2002). In isolation, factors such as reci-
procity and transitivity may seem insufficient for group 
formation, but research has highlighted the ability of 
complex higher-level phenomena to emerge from simple 
lower-level principles (Sawyer, 2005; Vallacher et al., 
2002; van Veelen, García, Rand, & Nowak, 2012). For 
example, research on social physics explains phenomena 
ranging from the direction in which people face at music 
festivals to the link between group fidgeting and dissolu-
tion (Pennebaker, 2003).
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Fig. 7.  Clustering coefficient as a function of round in simulations with 
10 different baseline levels of trust (A). Each line represents averages 
obtained across 100,000 iterations with N (number of players) = 50, r 
(reciprocity) = 3, and t (transitivity) = 2. Note that the x-axis is log10-
scaled.

Fig. 8.  Endogenous group genesis within a relatively homogeneous 
population of monks in a single monastery (Sampson, 1969). Each dot 
represents a single monk, and arrows represent ties between monks. 
Clustering calculations reveal two groups of size 7, one group of size 3, 
and one isolated individual.
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Agent-based models shed light on both the configura-
tion of groups and the variability of group formation 
across a variety of parameters. These phenomena are dif-
ficult to examine in the lab because of the vast number 
of participants required for reliable estimates of effects, 
and because randomness and path dependence make 
group configurations sensitive to the outcome of initial 
interactions (Ingram & Morris, 2007). Previous research 
has also investigated group genesis (e.g., Efferson et al., 
2008; Schelling, 1969, 1971); however, those investiga-
tions relied on preexisting differences within the popula-
tions studied, such as racial differences (Schelling, 1971) 
or differences in T-shirt logos (Efferson et al., 2008), 
whereas we have shown that individual behaviors can 
lead to group formation even in completely homoge-
neous populations. Our results provide a parsimonious 
account of group genesis.

Author Contributions

K. Gray and D. G. Rand contributed equally to this article. All 
the authors developed the study idea and contributed to its 
implementation. K. Gray, D. G. Rand, and K. Lewis analyzed 
the data. All the authors contributed to preparing the manu-
script and approved the final version of the manuscript for 
submission.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with 
respect to their authorship or the publication of this article.

Supplemental Material	

Additional supporting information may be found at http://pss 
.sagepub.com/content/by/supplemental-data

Notes

1. Balance theory also suggests that the enemy of your enemy 
is your friend; however, the enemy of your enemy may simply 
be a jerk and therefore everyone’s enemy.
2. We treat distance (both physical and emotional) as isomor-
phic with probability of interaction: People interact with proxi-
mate others more than distant others, and with liked others 
more than disliked others.
3. Player m has a stronger opinion because .10 is .40 from the 
midpoint, whereas .62 is only .12 from the midpoint.
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